Mysql Berechnen Exponentiell Gleitender Durchschnitt




Mysql Berechnen Exponentiell Gleitender DurchschnittDies ist eine Evergreen Joe Celko Frage. Ich ignoriere, welche DBMS-Plattform verwendet wird. Aber auf jeden Fall Joe war in der Lage, mehr als 10 Jahren mit Standard-SQL zu beantworten. Joe Celko SQL-Puzzles und Antworten Zitat: Der letzte Update-Versuch deutet darauf hin, dass wir das Pradikat verwenden konnen, um eine Abfrage, die uns einen gleitenden Durchschnitt geben wurde: Ist die zusatzliche Spalte oder die Abfrage Ansatz besser Die Abfrage ist technisch besser, weil die UPDATE-Ansatz wird Denormalisierung der Datenbank. Wenn jedoch die historischen Daten, die aufgezeichnet werden, sich nicht andern und die Berechnung des gleitenden Durchschnitts kostspielig ist, konnten Sie die Verwendung des Spaltenansatzes in Erwagung ziehen. SQL Puzzle-Abfrage: mit allen Mitteln einheitlich. Sie werfen nur auf den entsprechenden Gewichtskorb je nach Entfernung vom aktuellen Zeitpunkt. Zum Beispiel quottake Gewicht1 fur Datenpunkte innerhalb von 24 Stunden von aktuellen Datenpunkt Gewicht0,5 fur Datenpunkte innerhalb von 48hrsquot. In diesem Fall ist es wichtig, wieviel aufeinander folgende Datenpunkte (wie 6:12 Uhr und 11:48 Uhr) voneinander entfernt sind. Ein Anwendungsfall, den ich mir vorstellen kann, ware ein Versuch, das Histogramm dort zu glatten, wo Datenpunkte nicht dicht genug sind ndash msciwoj Mai 27 15 at 22:22 Im nicht sicher, dass Ihr erwarteten Ergebnis (Ausgang) zeigt klassische einfache bewegen (rolling) Durchschnitt fur 3 Tage. Denn zum Beispiel gibt das erste Dreibettzimmer von Zahlen per Definition: aber man erwartet 4.360 und seine Verwirrung. Trotzdem schlage ich die folgende Losung vor, die die Fensterfunktion AVG verwendet. Dieser Ansatz ist viel effizienter (klarer und weniger ressourcenintensiv) als SELF-JOIN in anderen Antworten eingefuhrt (und ich bin uberrascht, dass niemand eine bessere Losung gegeben hat). Sie sehen, dass AVG wird mit Fall verpackt, wenn rownum gt p. days dann zu zwingen, NULL s in ersten Zeilen, wo 3 Tage Moving Average ist sinnlos. Wir konnen Joe Celkos dirty linken au?eren Join-Methode (wie zitiert von Diego Scaravaggi) anwenden, um die Frage zu beantworten, wie es gefragt wurde. Generiert die angeforderte Ausgabe: ############################################################################################################################# Anderungen. Die gewichteten gleitenden Mittelwerte sind linear, aber exponentielle gleitende Mittelwerte sind exponentiell. Das hei?t, das Gewicht kann als Kurve ausgedruckt werden: Es gibt eine gro?e Moglichkeit, exponentielle gleitende Mittelwerte in T-SQL zu berechnen, indem Sie ein undokumentiertes Feature uber Variablen und laufende Summen in SQL Server verwenden. In diesem Blogpfosten werde ich zeigen, wie man diese Methode verwendet, um exponentiellen gleitenden Durchschnitt in T-SQL zu berechnen, aber ich werde auch eine Methode vorstellen, die Standardfunktionen in SQL Server verwendet. Leider bedeutet das, mit einer Schleife. In den Beispielen werde ich einen 9 Tage exponentiellen gleitenden Durchschnitt berechnen. Die Beispiele verwenden die Datenbank TAdb. Ein Skript zur Erstellung von TAdb finden Sie hier. Exponential Moving Average (EMA): Laufende Totals-Methode Die Theorie hinter den laufenden Total Features in Updates wird ausfuhrlich von Jeff Moden in seinem Artikel Solving the Running Total und Ordinal Rang Probleme beschrieben. Weitere Ressourcen, die diese Methode zur Berechnung von EMA beschreiben, sind der Blogpfosten, der die gleitenden Durchschnitte mit T-SQL von Gabriel Priester berechnet und dem Forumsbeitrag Exponential Moving Average Challenge. Beide auf SQL Server Central. Grundsatzlich konnen Sie in T-SQL sowohl Variablen als auch Spalten in einer update - Anweisung aktualisieren. Die Updates werden Zeile fur Zeile intern von SQL Server ausgefuhrt. Dieses Zeilen-fur-Zeile-Verhalten macht die Berechnung einer laufenden Summe moglich. Dieses Beispiel zeigt, wie es funktioniert: Beachten Sie, dass 8220ColumnRunningTotal8221 eine laufende Summe von 8220ColumnToSum8221 ist. Mit dieser Methode konnen wir EMA9 mit diesem T-SQL berechnen: Die Berechnung von EMA ist recht einfach. Wir verwenden die aktuelle Zeile und die vorherige, aber mit mehr Gewicht auf die aktuelle Zeile. Das Gewicht wird nach der Formel 2 / (19) berechnet, wobei 822098221 der Parameter fur die Lange der EMA ist. Zur Berechnung von EMA9 fur Zeile 10 oben ist die Berechnung: In diesem Fall erhalt die aktuelle Zeile 20 des Gewichts (2 / (19) 0,2) und die vorhergehende Zeile erhalt 80 des Gewichts (1-2 / (19) 0,8) . Sie finden diese Berechnung in der Anweisung oben in der CASE-Anweisung: Exponential Moving Average (EMA): Looping-Methode Soweit ich wei?, mit Ausnahme der laufenden Summenmethode oben skizziert, gibt es keine Moglichkeit, EMA mit einer setbasierten SQL-Anweisung zu berechnen . Daher verwendet die T-SQL unten eine while-Schleife, um EMA9 zu berechnen: Die Ergebnisse sind die gleichen wie in den laufenden Summen Beispiel oben. Leistung Wie erwartet, ist die set based running sumals-Version viel schneller als die Loop-Version. Auf meiner Maschine lag die setbasierte Losung bei ca. 300 ms, verglichen mit ca. 1200 bei der Loop-Version. Die Schleifenversion entspricht jedoch mehr den SQL-Standards. Also die Wahl zwischen den Methoden hangt von what8217s am wichtigsten fur Sie, Leistung oder Standards. Der exponentielle gleitende Durchschnitt kann in der Trendanalyse verwendet werden, wie bei den anderen Arten von gleitenden Durchschnitten, dem Simple Moving Average (SMA) und dem gewichteten gleitenden Durchschnitt (WMA). Es gibt auch andere Berechnungen in der technischen Analyse, die die EMA, MACD zum Beispiel verwendet. Dieser Blog-Beitrag ist Teil einer Serie uber technische Analyse, TA, in SQL Server. Siehe die anderen Beitrage hier. Geschrieben von Tomas Lind Tomas Lind - Consulting als SQL Server DBA und Datenbankentwickler bei High Coast Database Solutions AB.