Moving Average Forecasting Beispiel Excel




Moving Average Forecasting Beispiel ExcelGleitender Durchschnitt Vorhersage Einleitung. Wie Sie vermutlich schauen, betrachten wir einige der primitivsten Ansatze zur Prognose. Aber hoffentlich sind diese zumindest eine lohnende Einfuhrung in einige der Rechenprobleme im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir von Anfang an beginnen und beginnen mit Moving Average Prognosen zu arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen, unabhangig davon, ob sie glauben, sie sind. Alle Studenten tun sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, in dem Sie vier Tests wahrend des Semesters haben werden. Angenommen, Sie haben eine 85 auf Ihrem ersten Test. Was wurden Sie vorhersagen, fur Ihre zweite Test-Score Was glauben Sie, Ihr Lehrer wurde fur Ihre nachste Test-Punkt vorhersagen Was denken Sie, Ihre Freunde konnten fur Ihre nachste Test-Punkt vorherzusagen Was denken Sie, Ihre Eltern konnten fur Ihre nachste Test-Score Unabhangig davon vorhersagen Alle die blabbing Sie tun konnten, um Ihre Freunde und Eltern, sie und Ihr Lehrer sind sehr wahrscheinlich zu erwarten, dass Sie etwas im Bereich der 85 erhalten Sie gerade bekommen. Nun, jetzt gehen wir davon aus, dass trotz Ihrer Selbst-Forderung an Ihre Freunde, Sie uber-schatzen Sie sich und Figur, die Sie weniger fur den zweiten Test lernen konnen und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekummerten gehen Erwarten Sie erhalten auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansatze, damit sie eine Schatzung unabhangig davon entwickeln, ob sie es mit Ihnen teilen. Sie konnen zu sich selbst sagen, dieser Kerl ist immer blast Rauch uber seine smarts. Hes gehend, ein anderes 73 zu erhalten, wenn hes glucklich. Vielleicht werden die Eltern versuchen, mehr unterstutzend und sagen, quotWell, so weit youve bekommen eine 85 und eine 73, so dass Sie vielleicht auf eine uber (85 73) / 2 79. Ich wei? nicht, vielleicht, wenn Sie weniger haben Partying und werent wedelte das Wiesel ganz uber dem Platz und wenn Sie anfingen, viel mehr zu studieren, konnten Sie einen hoheren score. quot erhalten. Beide dieser Schatzungen sind wirklich gleitende durchschnittliche Prognosen. Der erste verwendet nur Ihre jungste Punktzahl, um Ihre zukunftige Leistung zu prognostizieren. Dies wird als gleitende Durchschnittsprognose mit einer Datenperiode bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass alle diese Leute, die auf deinem gro?en Verstand zerschmettern, Art von dich angepisst haben und du entscheidest, auf dem dritten Test aus deinen eigenen Grunden gut zu tun und eine hohere Kerbe vor deinen quotalliesquot zu setzen. Sie nehmen den Test und Ihre Gaste ist eigentlich ein 89 Jeder, einschlie?lich selbst, ist beeindruckt. So jetzt haben Sie die abschlie?ende Prufung des Semesters herauf und wie ublich spuren Sie die Notwendigkeit, alle in die Vorhersagen zu machen, wie youll auf dem letzten Test tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich konnen Sie das Muster sehen. Was glauben Sie, ist die genaueste Pfeife, wahrend wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zuruck, die von Ihrer entfremdeten Halbschwester namens Whistle While We Work begonnen wurde. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst prasentieren wir die Daten fur eine dreidimensionale gleitende Durchschnittsprognose. Der Eintrag fur Zelle C6 sollte jetzt sein Sie konnen diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie der Durchschnitt bewegt sich uber die jungsten historischen Daten, sondern verwendet genau die drei letzten Perioden zur Verfugung fur jede Vorhersage. Sie sollten auch feststellen, dass wir nicht wirklich brauchen, um die Vorhersagen fur die vergangenen Perioden zu machen, um unsere jungste Vorhersage zu entwickeln. Dies ist definitiv anders als das exponentielle Glattungsmodell. Ive eingeschlossen das quotpast predictionsquot, weil wir sie auf der folgenden Webseite verwenden, um Vorhersagegultigkeit zu messen. Nun mochte ich die analogen Ergebnisse fur eine zwei-Periode gleitenden Durchschnitt Prognose zu prasentieren. Der Eintrag fur Zelle C5 sollte jetzt sein Sie konnen diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stucke der historischen Daten fur jede Vorhersage verwendet werden. Wieder habe ich die quotpast predictionsquot Bilder dienen der Veranschaulichung und fur die spatere Verwendung in Prognose Validierung. Einige andere Dinge, die wichtig zu beachten sind. Fur einen m-Zeitraum durchschnittliche Prognose bewegen nur die m letzten Datenwerte werden verwendet, um die Vorhersage zu machen. Nichts anderes ist notwendig. Fur einen m-Zeitraum durchschnittliche Prognose bewegen, wenn quotpast predictionsquot machen, feststellen, dass die erste Vorhersage in Periode m 1. Beide Probleme auftritt, wird sehr bedeutend sein, wenn wir unseren Code zu entwickeln. Entwicklung der Moving Average Funktion. Jetzt mussen wir den Code fur den gleitenden Durchschnitt Prognose zu entwickeln, die flexibel eingesetzt werden konnen. Der Code folgt. Beachten Sie, dass die Eingange fur die Anzahl der Perioden sind Sie in der Prognose und dem Array von historischen Werten verwenden mochten. Sie konnen es in beliebiger Arbeitsmappe speichern. Funktion MovingAverage (Historische, NumberOfPeriods) As Single Deklarieren und Variablen Dim Artikel As Variant Dim Zahler As Integer Dim Accumulation As Single Dim HistoricalSize Initialisierung As Integer initialisieren Variablen Zahler 1 Accumulation 0 Bestimmung der Gro?e der historischen Array HistoricalSize Historical. Count fur Zahler 1 Um NumberOfPeriods Anhaufung der entsprechenden Anzahl der zuletzt beobachteten Werte Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation / NumberOfPariods Der Code wird in der Klasse erklart. Sie mochten die Funktion auf dem Arbeitsblatt platzieren, so dass das Ergebnis der Berechnung dort erscheint, wo es wie folgt aussehen soll: In der Praxis liefert der gleitende Durchschnitt eine gute Schatzung des Mittelwerts der Zeitreihe, wenn der Mittelwert konstant ist oder sich langsam andert. Im Fall eines konstanten Mittelwertes wird der gr?te Wert von m die besten Schatzungen des zugrunde liegenden Mittels liefern. Ein langerer Beobachtungszeitraum wird die Effekte der Variabilitat ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Anderung in dem zugrunde liegenden Prozess zu ermoglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Anderungen im zugrundeliegenden Mittel der Zeitreihen enthalt. Die Abbildung zeigt die Zeitreihen fur die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie generiert wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhoht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein Zufallsrauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 zugefuhrt wird. Die Ergebnisse der Simulation werden auf die nachste Ganzzahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen fur das Beispiel. Wenn wir die Tabelle verwenden, mussen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schatzwerte des Modellparameters, fur drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schatzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen wurden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Fur alle drei Schatzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzogerung mit m zunimmt. Die Verzogerung ist der Abstand zwischen dem Modell und der Schatzung in der Zeitdimension. Wegen der Verzogerung unterschatzt der gleitende Durchschnitt die Beobachtungen, wahrend der Mittelwert zunimmt. Die Vorspannung des Schatzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzogerung in der Zeit und die Bias in der Schatzung eingefuhrt sind Funktionen von m. Je gro?er der Wert von m. Desto gro?er ist die Gro?e der Verzogerung und der Vorspannung. Fur eine stetig wachsende Serie mit Trend a. Die Werte der Verzogerung und der Vorspannung des Schatzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen uberein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend andert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzogerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzogerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum fur eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht uberraschen. Der gleitende Durchschnittsschatzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel wahrend eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir konnen auch aus der Figur schlie?en, dass die Variabilitat des Rauschens den gro?ten Effekt fur kleinere m hat. Die Schatzung ist viel volatiler fur den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wunsche, m zu erhohen, um den Effekt der Variabilitat aufgrund des Rauschens zu verringern und m zu verringern, um die Prognose besser auf Veranderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsachlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so gro? wie moglich macht. Ein gro?es m macht die Prognose auf eine Anderung der zugrunde liegenden Zeitreihen unempfanglich. Um die Prognose auf Veranderungen anzupassen, wollen wir m so klein wie moglich (1), aber dies erhoht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In fur die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte fur die Schatzung und werden verwendet, um den gleitenden Durchschnitt fur die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose fur einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine gro?ere Zahl geandert wird, werden die Zahlen in der Spalte Vorwarts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, betragt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet.